Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
While spin angular momentum is limited to ±ℏ, orbital angular momentum (OAM) is, in principle, unbounded, enabling tailored optical transition rules in quantum systems. However, the large optical size of vortex beams hinders their coupling to nanoscale platforms such as quantum emitters. To address this challenge, we experimentally demonstrate the subdiffraction focusing of an OAM-carrying beam using a hypergrating, a flat meta-structure based on a multilayered hyperbolic composite. We show that our structure generates and guides high-wave vector modes to a deeply subwavelength spot and experimentally demonstrate the focus of an OAM-carrying beam on a spot size of ∼λ/3. We also show how the proposed platform facilitates the formation of an optical skyrmion with spin textures as small asλ/250, opening new avenues for controlling light–matter interactions.more » « lessFree, publicly-accessible full text available September 18, 2026
-
Abstract Photonic funnels, microscale conical waveguides that have been recently realized in the mid-IR spectral range with the help of an all-semiconductor designer metal material platform, are promising devices for efficient coupling of light between the nanoscales and macroscales. Previous analyses of photonic funnels have focused on structures with highly conductive claddings. Here, we analyze the performance of funnels with and without cladding, as a function of material properties, operating wavelength, and geometry. We demonstrate that bare (cladding-free) funnels enable orders-of-magnitude higher enhancement of local intensity than their clad counterparts, with virtually no loss of confinement, and relate this phenomenon to anomalous reflection of light at the anisotropic material–air interface. Intensity enhancement of the order of 25, with confinement of light to wavelength/20 scale, is demonstrated. Efficient extraction of light from nanoscale areas is predicted.more » « less
-
null (Ed.)Far-field analysis of small objects is severely constrained by the diffraction limit. Existing tools achieving sub-diffraction resolution often utilize point-by-point image reconstruction via scanning or labelling. Here, we present a new technique capable of fast and accurate characterization of two-dimensional structures with at least wavelength/25 theoretical resolution, based on a single far-field intensity measurement. Experimentally, we realized this technique resolving the smallest-available to us 180-nm-scale features with 845-nm laser light, reaching a resolution of wavelength/5. A comprehensive analysis of machine learning algorithms was performed to gain insight into the learning process and to understand the flow of subwavelength information through the system. Image parameterization, suitable for diffractive configurations and highly tolerant to random noise was developed. The proposed technique can be applied to new optical characterization tools with high spatial resolution, fast data acquisition and artificial intelligence, such as high-speed nanoscale metrology and quality control, and can be further developed to high-resolution spectroscopymore » « less
An official website of the United States government
